Kaiyun(全站)体育官方网站

离心式压缩机设计说明书doc—开云体育全站

您当前位置: 首页 > 新闻动态 > 公司新闻

新闻动态
离心式压缩机设计说明书doc

类别:公司新闻   发布时间:2024-11-10 08:10:22   浏览:

  毕 业 论 文 离心式压缩机的设计 姓 名 院(系) 专业班级 学 号 指导教师 职 称 论文答辩日期 年 月 日 学生承诺书 本毕业设计是在老师的指导下独立完成,没有抄袭别人的结果。毕业设计所采用的数据及原理除小部分是通过查找相关文献资料得到,其余数据都是来自计算,绝对没有捏造成分。本人郑重承诺:本人愿对文章负全部责任! 本人签名: TOC \o 1-3 \h \u 2520 摘 要 3 3503 1 前言 5 3400 1.1 离心式压缩机技术现状和发展趋势 5 13199 1.2 离心式压缩机发展方向 6 15920 2. 离心压缩机气动参数计算 8 8157 2.1 原始数据 8 18522 2.2 进气道参数 9 12233 2.3 压缩机叶轮参数 10 14972 2.4 无叶扩压器段参数 15 27728 2.5 叶片扩压器参数 17 25146 2.6 蜗壳参数 19 6847 2.7 压缩机参数校核 20 11543 2.8 轴的强度校核 21 25160 2.9 轴承和键的选择 21 24117 2.10 轴承盖的参数计算 21 14171 3 结论 22 9941 参 考 文 献 23 665 致 谢 24 摘 要 离心式压缩机的用途很广。例如氨化肥生产中的氮、氢气体的离心压缩机,空气分离工程、炼油和石化工业中普遍使用的各种压缩机,天然气输送和制冷等场合的各种压缩机。在动力工程中,离心式压缩机主要用于小功率的燃气轮机、内燃机增压以及动力风源等。 本课题研究的内容是设计一台离心式压缩机。叶轮和扩压器是离心式压缩机的关键部件,叶轮设计制造的好坏及其与扩压器的匹配将对压缩机的性能产生决定性的影响。 关键词:进气道 叶轮 扩压器 英 文 摘 要 The Design of Centrifugal Compressor Abstract:Centrifugal compressor is very versatile. A variety of occasions such as nitrogen, hydrogen, ammonia fertilizer production in the centrifugal compressor, air separation engineering, commonly used in the refining and petrochemical industries, compressors, natural gas transportation and refrigeration compressors. In power engineering, the centrifugal compressor is mainly used for low-power gas turbines, internal combustion engine supercharged and dynamic wind source. The content of this research is the design of a centrifugal compressor. Impeller and diffuser is a key component of the centrifugal compressor impeller design and manufacture of the good or bad a decisive impact on the match will be the compressor diffuser performance. Key words:Inlet;Impeller;Diffuser 1 前言 1.1离心式压缩机技术现状和发展趋势 18世纪初期,Papin给出了最早的离心式叶轮机械的设计方法,在他出版的著作中介绍了离心泵的设计方法。从那以后,离心式叶轮机械开始逐步得到发展。 19世纪,离心式压缩机伴随着叶轮机械理论的发展而得到了迅速的发展。在这一时期,Leonhard Eular建立了叶轮机械中的基本能量方程;Lazare Carnot指出在叶轮进口流体应光滑顺利的流入叶轮,即零攻角状态,他还指出为了获得高效率应减小叶轮出口动能。这一阶段的标志性成果是离心压缩机中开始使用有叶扩压器。 从20世纪开始至今是离心压缩机技术迅猛发展的时代。在这一时期,产生了对离心压缩机发展具有划时代意义的理论和方法。正是这些理论和方法的诞生,使得离心压缩机在全世界范围内得到了极为广泛的应用。1930年,Frank Whittle申请了他的第一项专利,在国际上首次应用了双向进气单级离心压缩机,这个离心压缩机由轴向透平驱动,采用双向进气不但可以避免在转子进口叶尖产生超音速流动,而且可以减小轴向推力。从那时开始,Frank Whittle就将目标瞄准单级压比达到4,而此前单级压比最高值只达到2.5。 离心压缩机因为受旋转、曲率及粘性等诸多因素的影响及相互作用而使其内部流动表现为相当复杂的非定常、有粘性的三维湍流流动。但在早期,因为三元理论及计算手段的缺乏,使得离心压缩机的设计主要采用几何设计或二维气动设计方法进行。20世纪50年代,我国著名的科学家吴仲华教授提出了对离心压缩机发展具有划时代意义的两簇流面理论,奠定了叶轮机械内部三元流场求解的基础。他首先提出叶轮机械叶片通道内的三元流动可以看作是两类相交的流面(S1、S2流面,S1流面为是从一个叶片到相邻叶片之间的周向扭曲流面,S2流面是从轮毂导轮盖的径向扭曲流面)之和,这样就可以把一个复杂的三元问题转化为两个二元问题,从而使计算简化。随着吴氏三元理论的提出,离心压缩机的设计方法开始由几何设计或二维气动设计向准三维气动设计及全三维气动设计方法转变。许多国内外专家学者利用这一理论对离心压缩机进行了研究并取得了许多有益的成果[8] 离心式空气压缩机属于速度式压缩机,在用气负荷稳定时离心式空气压缩机工作稳定、可靠。 优点是 ①结构紧凑、重量轻,排气量范围大; ②易损件少,运转可靠、寿命长; ③排气不受润滑油污染,供气品质高; ④大排量时效率高、且有利于节能。 目前 离心式压缩机发展趋势是:容量不断增大,以满足石化生产规模不断扩大的要求随着新技术的发展,新型气体密封、磁力轴承和无润滑联轴器的出现,不断开发高压压缩机和小流量压缩机产品进一步研究三元流动理论,不仅应用到叶轮设计,还发展到叶片扩压器静止元件设计中,以期达到最高的机组效率低噪声化,采用噪声防护以改善操作环境。 国内可以生产石化用离心压缩机的制造企业主要有沈阳鼓风机厂、上海鼓风机厂、陕西鼓风机厂等。他们引进国外技术,经过消化吸收,可以生产石化用大型离心压缩机。沈阳鼓风机厂从意大利新比隆公司引进了MCL、BCL、PCL三个离心压缩机系列的全套设计制造专利技术从日本日立公司引进了DH型离心压缩机、HS型工业冷冻机设计制造专利技术,从美国费城齿轮公司引进了MHS、HS、HSS、HSD四个系列的高速齿轮变速器的设计制造专利技术从德国德马格公司引进了VK8型组装式离心压缩机设计制造专利技术和从日本川崎重工株式会社引进了GM型污水处理鼓风机技术。沈阳鼓风机厂生产的离心压缩机在国内石化企业已经应用200多台,市场占有率已达80以上。沈鼓厂生产的300万t/a催化裂化装置富气压缩机进口流量达到81 600Nm 3 /h,功率达到7 166kW离心式循环氢压缩机流量达到250 000Nm 3 /h,功率达到1 600kW,出口压力达到18MPa,已经应用于120万t/a加氢裂化装置沈鼓厂自行设计、制造的裂解气压缩机流量达到120 000Nm 3 /h,功率达到18 000kW同国外合作设计、制造的丙烯压缩机流量达到58 000Nm 3 /h,功率达到7 500kW乙烯压缩机流量达到74 000Nm 3 /h,功率达到5 500kW,已经应用到30~50万t/a乙烯裂解装置。沈鼓厂自行设计和制造的大化肥装置的空气压缩机、天然气压缩机、氨压缩机、二氧化碳压缩机已应用于20~30万t/a化肥装置沈鼓设计制造的空气压缩机流量达到220 000Nm 3 /h,功率达到17 580kW,已经应用于40 000Nm 3空分装置[1]。 目前国内离心压缩机在高技术、高参数、高质量和特殊产品方面还不能满足国内需要。另外在技术水平、质量、成套性上和国外还有差距。随着石化生产规模不断扩大,离心压缩机大型化方面面临新的课题。100万t/a乙烯三机中的裂解气压缩机,进口流量达到403 000kg/h,出口压力达到3.89MPa,轴功率达到45770kW。45万t/aPTA装置原料空气压缩机带尾气透平进口流量162 413Nm 3 /h,进出口压力0.1/1.46MPa,轴功率22 000kW,国内在设计制造这些大型气体压缩机上还没有成熟的经验。 因此,对 离心式压缩机的设计理论进行深入、系统的研究非常有必要,从而设计出符合实际工作要求的 离心式压缩机。 1.2 离心式压缩机发展方向 大型离心压缩机组属技术密集型、高难度产品,必须拥有先进的专业设计制造技术。由于化工和石油化工装置不断向大型化发展,用户对压缩机组的能耗、可靠性、配套水平等技术指标的要求也越来越高。 在二氧化碳压缩机方面,过去出现了一些压缩机性能与工艺条件不匹配的事故。现在西安交大、沈阳鼓风机厂都有自己的二氧化碳闭式试验台,问题已得到解决。因此,对大型化肥和石油化工压缩机的改进已基本上集中在压缩机性能本身的改进上。目前,世界上先进的压缩机制造厂家都在致力于这方面的研究。如在压缩机的气动性能设计上使用的程序,能够适用于几百个大气压,在近临界区域条件下适用于几十种复杂气体,大大提高了计算精度;在转子稳定性研究上,已经研制出超二阶、三阶的高柔性转子,并已成功使用;还在部件成套技术上有了很大发展,如在密封、轴承、调节系统、辅机配套水平等方面。因此,如何跟踪世界上先进的压缩机设计制造技术是当务之急。 大型离心压缩机组的改进,需要加强以下方面研究。 1.三维工程设计CAD开发。采用三维工程设计可以优化设计机组布置,使机组布置美观,且具有自动进行干涉检查的功能,避免设计缺陷。能够自动进行结构分析,提高设计精度和设计效率。CAD的主要开发内容有:建立三维实体造型设计 模型,建立三维实体设备图库、数据库等。 2.转子--轴承系统动力特性设计专家系统的开发。在设计过程中,当转子--轴承系统动力特性不能满足设计规范的要求,或已经制造出来的机组出现振动过大、运行不稳定等情况时,就必须修改原机组的结构参数、物性参数值。但是影响转子--轴承系统动力特性的结构参数有很多,修改哪一个或几个结构参数最有效,能立竿见影地解决设计和机组稳定运行问题,是建立该专家系统软件的目标。主要研究内容有:各种转子结构、轴承结构参数对转子--轴承系统动力特性的影响、建立智能型专家系统设计计算软件 包等。 3.智能型计算机控制系统开发。目前世界上已广泛采用了微机控制的三重冗余、容错控制器、多功能防喘振、性能调节、安全保护综合控制系统,使离心压缩机控制由传统的模拟仪表控制变为多功能的专家控制系统。主要研究内容有:研制大化肥装置用离心压缩机组专用的、具有防喘振、性能调节、安全保护的数字式微机综合控制系统[2]。 德国宇航院(DFVLR)Krain博士基于准三维气动设计方法,通过计算机辅助设计完成了离心压缩机后向三元叶轮的设计,并应用激光测试技术对该叶轮内部流场进行了非常详细地测量[9]。迄今为止,Krain叶轮仍然是许多研究人员校验自己设计方法的对象。 国内在离心压缩机三元叶轮的各类反命题设计方法中,以角动量的不同分布来控制叶片几何型线]。角动量的分布规律直接决定叶片载荷的大小并影响流动方向、跨盘盖方向的速度分布,而速度分布对叶轮二次流的强度及叶片表面边界层的发展有决定性的影响,这必然影响到对叶轮边界层损失、分离损失和二次流损失的控制,因此合适的角动量分布是设计高性能叶轮最有效的手段。席光等人以上文提到的德国宇航院(DFVLR)Krain博士设计并试验的后向三元叶轮为研究对象,对其内部流动及气动性能进行了计算,在保留子午型线的前提下,改变角动量分布,对叶片重新设计,以研究角动量分布对叶轮内部三维流场及总体性能的影响,发展了一种以三维粘性分析为参考准则的实用设计方法,并利用CFD软件FLUENT5.4进行了数值计算,计算结果表明:角动量的不同分布对离心压缩机叶轮的压比和效率有明显的影响。 在发展以三维粘性分析为参考准则的离心压缩机三元叶轮的实用设计方法的基础上,王晓峰等人又探讨了将离心叶轮内部的三维粘性流动求解与试验设计技术以及响应面方法相结合的优化设计方法。响应面方法是试验设计与数理统计相结合的优化方法,在试验测量、经验公式或数值分析的基础上,对指定的设计点集合进行连续的试验,并在设计空间构造测定量的全局逼近,这样便可以全面观察响应变量在设计空间的变化[12]。在详细探讨响应面优化设计方法的基础上,他们以某工业离心压缩机中间级叶轮为研究对象,采用响应面方法对其进行优化设计,结果表明:与原始叶轮相比,性能有较大改进。 为减小离心压缩机叶轮进口的冲击损失,降低叶片厚度对进气的阻塞,避免叶轮出口圆周上相邻两叶片间距过大等,目前国内外的高效率离心压缩机叶轮广泛采用了长、短叶片(分流叶片)的形式。刘瑞韬等人运用三维粘性流动数值计算程序Fine/Turbo对含分流叶片的离心压缩机级内三维粘性流场进行了数值分析,为该类叶轮的优化设计及改进研究打下了基础[14]。在此基础上,刘瑞韬等人又对分流叶片位置对高转速离心压缩机性能的影响进行了研究,重点分析了分流叶片不同起始位置及不同周向位置对压缩机 内三维粘性流场及整级性能的影响。计算结果表明:采用分流叶片在进口处会减少叶片阻塞;不同分流叶片起始位置时长叶片进口流场具有相同的分布规律;分流叶片越短,长叶片压力面无量纲静压载荷越大;当分流叶片长度达到某一数值后,长叶片载荷变化趋于平缓;就文献[15]中研究的叶轮来说,分流叶片起始位置位于图2所示Ⅲ位置,分流叶片与长叶片吸力面夹角为22.5°时的叶轮模型级效率最高,压缩机性能最好[15]。 初雷哲、杜建一等人采用CFD软件对微型燃机的离心叶轮进行数值模拟,讨论了叶片数及分流叶片位置对叶轮性能的影响,并进行了流场分析。分析结果表明:叶片数增加使得性能曲线左移,单个叶片载荷减小,损失增加,叶轮效率下降,但是增压效果得到改善;分流叶片位置靠近主叶片压力面时,性能曲线右移,流通能力提高,同时会使分流叶片的载荷增大,当分流叶片位置靠近主叶片吸力面时,情况正好相反[16]。 杨策等人开发了一套将初步设计、性能优化计算、性能预测、叶片成型和叶轮应力分析包含在内的离心式叶轮辅助设计系统,并用其设计出一种小型高转速离心压缩机,然后对其性能进行了详细地分析研究。杨策等人的研究结果表明:在进口条件和转速相同情况下,后向叶轮压比小于径向叶轮,效率高于径向叶轮,后向叶轮的流量特性曲线的斜率大于径向叶轮的流量特性曲线的斜率,后向叶轮的流量特性更接近轴流压缩机的特性;顶部间隙增大时,离心压缩机压比减小,效率下降;对于小流量的离心压缩机,叶轮进口弯曲对叶轮在设计点的绝热效率影响不大,叶轮出口弯曲对离心压缩机在设计点的效率影响很小;叶轮正弯时存在一个最高效率点,当叶轮正弯度大于或小于这个数值时效率均下降;采用前倾叶轮可以提高压缩机的效率,但降低了压缩机的压比;在较低转速下,前倾叶轮在大部分工作范围内效率高于普通叶轮,在较高转速下,前倾叶轮在全工况范围内效率都高于普通叶轮;前倾叶轮比普通叶轮有更大的喘振裕度,工作范围更宽广;前倾叶轮改善了出口的气流分离现象,能够减少掺混损失。 综上所述,国内研究人员对离心压缩机的研究主要是通过数值计算来进行,一般是先用自己开发的计算程序或应用软件计算国外文献提到的有详细试验结果的离心压缩机或叶轮(一般多用前文提及的德国宇航院(DFVLR)Krain博士研究的叶轮),经过验证可行后,再用于自己的研发。 一直以来,国内外在采用先进技术进行离心压缩机流场测试方面的研究较之设计方法的研究则稍显滞后。运行中的离心压缩机内部流场测试技术的重大突破是伴随着激光速度测量学的成功发展而实现的。1970年,Eckardt运用Schodld的2倍焦距激光测速计(Laser-2focus-Velocimeter)对压比为3的压缩机内部流场进行了研究。在20世纪60年代初出现的激光多普勒测速技术和2倍焦距激光测速技术几乎同时被应用于离心压缩机内部流场的测量。 国内上海交通大学的缪俊、谷传纲等人研究了激光相位多普勒测速技术(PDA)在离心压缩机叶轮内部流场测量中的应用,他们采用PDA技术对试验用离心压缩机在小流量工况下叶轮内部的流动进行了测量,对如何在原有适合粒子图像速度场仪(PIV)测量的试验台上进行PDA测量,并提出了改进意见,分析了小流量工况下流道内气流速度矢量的变化趋势等流动特性[17]。测试技术的发展必将进一步推动离心压缩机技术的发展。 前述国内外研究人员在各自的研究过程中基本都针对的是较大流量的离心压缩机,所提及的杨策等人研究的一种小型高转速离心压缩机其流量也是0.215kg/s,难以完全说明小流量(0.1kg/s以下)下的情形。 F.Gui et al进行了高速小流量离心压缩机的设计和试验研究。在他的文献里介绍了一种小流量高转速的离心压缩机的研究结果,结果表明:小流量高转速离心压缩机在几何特征与整机性能上与大型离心压缩机存在区别,小流量高转速的离心压缩机在进口处轮盖与轮毂的直径比较大,叶轮外径与进口轮盖直径之比及叶尖间隙与叶片高度之比比大型离心压缩机大许多;在设计范围内,大型离心压缩机的流量-压比曲线要比小流量高转速离心压缩机的流量-压比曲线平坦得多,这也暗示着小流量高转速离心压缩机与大型离心压缩机的设计是有区别的,大型离心压缩机设计的经验方法不能完全应用于小流量高转速离心压缩机的设计。F.Gui et al设计了一个叶轮直径仅为63mm的小流量高转速离心压缩机,其效率可达84%,这个数值较之从20世纪50年代起一直未有太大提高的60%左右的效率则是有了相当大的进步,这也表明:设计一个用于飞行器空气循环制冷系统和小型蒸汽压缩制冷系统用的小流量高转速离心压缩机是可以实现的。 经过研究人员的长期努力,对离心压缩机的研究,无论是设计理论、方法还是试验手段都取得了巨大的进步,但因为三维流场本身的复杂性及相关技术发展的限制,使得仍有一些问题有待完善和解决。 叶轮和扩压器是离心压缩机的关键部件,叶轮设计与制造的好坏及其与扩压器的匹配情况将对压缩机的性能产生决定性的影响。作为整个压缩机来说,轴承的性能及润滑、密封情况也将会对压缩机性能产生影响。 随着计算机技术及计算流体动力学(CFD)的发展,相继出现了一批可以应用于离心压缩机研究的CFD应用软件。目前市场上较常见的有:FLUENT、NUMECA、NREC、CFX、STAR-CD等,这些软件一般都集中了造型、网格生成、流场计算及后处理功能。这些软件的发展极大地丰富了三元叶轮的设计手段,提高了工程设计的效率,为设计性能优良的三元叶轮创造了更好的条件。 用三元理论设计的叶轮叶片形状一般为空间曲面,叶片及叶轮的加工成型是制造的重点,也是难点。对于三元叶轮,常用的加工方法主要有两种:三体焊形式,也即对轮盘、叶片、轮盖分别加工然后再焊装;整体铣制,也就是轮盘和叶片在一起利用多坐标设备进行整体铣制而得到一个半开式叶轮。为避免干涉,目前国际上对这种叶轮的加工大都是利用价格很高的五坐标加工中心进行。 在离心压缩机的设计过程中,叶轮与扩压器的匹配问题一直以来都是困扰设计人员的难题之一。影响叶轮与扩压器匹配的主要因素有:有叶扩压器的喉部面积,叶轮与扩压器之间的间隙,气动叶型扩压器的稠度,扩压器叶片前缘形状等。 研究发现改变有叶扩压器的喉部面积可以改变叶轮与扩压器的匹配范围。当有叶扩压器的喉部面积较大时,叶轮与扩压器在流量较大区域内匹配;当有叶扩压器的喉部面积较小时,叶轮与扩压器在流量较小区域内匹配。低稠度的气动叶型扩压器具有较宽的工作范围,能明显改善喘振边界限制。关于扩压器叶片前缘的最佳位置目前尚未有明确的答案,只是估计扩压器叶片前缘所在的半径与叶轮半径之比在1.15以上。Kenny认为:在扩压器叶片前缘采用燕尾槽的方式可以使流出叶轮的涡破碎,从而使流动更加稳定。总之,影响叶轮与扩压器匹配问题的因素仍有待进一步发现和解决。 离心式压缩机一般采用增速齿轮,转子转速一般都在5000r/min以上,目前一般采用滑动轴承,滑动轴承的设计也是研制离心压缩机的一个重点。 压缩机转速的增大必然要求减小轴承和轴之间的摩擦。国内在这方面的研究已有多年,静压和动压空气轴承已在许多透平机械中得到应用。文献[18]提出国外已有一种磁力轴承在被应用于离心压缩机后展示了其优良的性能。磁力轴承的一个明显的优点就是它在转轴旋转后是悬浮于轴上的,只要空气充满磁力轴承和轴之间的狭小间隙,轴就悬浮在空气(或其它工作介质)中旋转,以至于相对其它类型轴承来说,磁力轴承运转时的摩擦力是可以忽略不计的,从而转子能够真正实现在转子强度和“堵塞”限制范围内以任何速度运转。因此有必要加快磁力轴承应用技术研究。 目前,国内外对于高压比(单级压比>5)离心压缩机的应用仍然较少,这主要是因为其效率低、流动范围受限等原因所造成的。现代三维求解技术及先进测试手段(PIV、PDA等)的应用将使这些问题有望得到解决,但仍需要大量的努力,一旦在这一领域实现突破,将会使得离心压缩机的使用成本大幅下降,从而使离心压缩机得到更大范围地应用[7]。 对于离心式制冷压缩机研究,外一个有待突破的问题即是实现其在小流量场合的应用。离心压缩机依赖于高流速实现增压,这种高流速不可避免地会带来摩擦及气动损失等流动损失。对于小流量的离心压缩机,当转速不大时,其流动损失将显著影响效率的提高。因此,对于小流量的压缩机,必须增加其转速以保证达到一定的效率。随着运用CFD及三元理论进行离心压缩机研制技术的进一步发展,高转速轴承技术的日益成熟,相信有望在这一领域实现突破。 2. 离心压缩机气动参数计算 2.1 原始数据 空气流量m: 2.5kg/s 压强比: 2.4 环境压强p: 1.01310Pa 环境温度T: 293K 环境密度: 1.205kg/m 空气气体常数R: 287J/(kg.K) 空气绝热指数k: 1.4 交流电机驱动 2.2 进气道参数 吸气室是为了把气体从进气管或中间冷却器引到工作叶轮中去。设计时应尽量减少气体的流动损失,避免出现气流局部降速和分离。吸气室的出口气流要均匀,不产生切向的旋绕,以保证叶轮进口有均匀的速度场与压力场。除了上述气动要求外,还要注意到加工制造的方便。 吸气室的形式较多,常见的有:轴向进气的吸气管、径向进气的进气管、双支承轴承所采用的径向吸气室、水平进气所采用的进气室。 本设计采用的是轴向进气的吸气管,如图1,这种进气管形状最简单,一般用于单机悬臂式鼓风机或增压器中。进气管可做成收敛状,以使气体能均匀进入后面的叶轮。这种进气管形状简单,气流均匀,损失较小,故比其它形式的具有较好的性能。 图1 叶轮对气体所做的绝热压缩功l l==83739J/kg 叶轮出口的圆周速度 =346m/s(取=0.70) 取进气道出口的速度C(=50~150m/s) 取 C=100m/s 进气道内空气降温 ==4.98K 进气道出口温度T T=T-=288.02K 进气道多变指数n(=1.37~1.39) n=1.37 进气道出口空气压强p p==0.9510P 进气道出口空气密度 =1.15kg/m 进气道出口面积f f=217cm 2.3 压缩机叶轮参数 压气机叶轮一般分为两部分:前一部分为导风轮,后一部分叫工作轮。这是由于压气机叶片前缘部分弯曲较大,形状复杂。大型的压气机为了便于制造把前后二部分分开制造,而形成两个轮子。尤其实对于径向直叶片的工作轮(如图2),前面设导风轮是必要的。因为叶轮进口处从轮毂到轮缘的半径是变化的,圆周速度也就是变化的,那么进口气流角是变化的。全进口叶片角为,那么 ?????????? ??????????????????? 式中为冲角,那么叶轮进口叶片角也是变化的。 图2 径向直叶片式的叶轮 导风轮也是一个扩张性流道,出口速度大于进口速度,故气体静压有所提高。 叶数的结构形式分为以下几种: (1) 闭式叶轮,由于轮盘、叶片、轮盖三部分组成,由于轮盖的强度不够,使叶轮的转速受到限制,一般闭式叶轮的周围速度在320m/s以下。 (2) 半开式叶轮,这种叶轮强度和刚度均好,可达到450~540m/s圆周速度,用于高压比,高转速压气机中,在内燃机的透平增压器和小功率燃气轮机中得到广泛应用。 (3) 此外还有双进气叶轮,全开式叶轮。 本设计采用半开式叶轮。 取叶轮外径D D=290mm 转速n n==22798r/min 取叶轮进出口直径比D 取 =0.7 导风轮进口外径 =203mm 导风轮进口内径 ==116mm(取110mm) 导风轮进口平均直径 =163mm 导风轮进口外径处的圆周速度 =242m/s 导风轮进口处的圆周速度 =194m/s 导风轮进口处的圆周速度 =131m/s 导风轮叶片 =17~37 取 =20 取导风轮进口的阻塞系数 =0.85~0.95 取 =0.90 导风轮进口轴向速度 111m/s 导风轮进口相对速度 266m/s 导风轮进口马赫数 0.782 (0.7820.9满足条件,如果0.9则需要重新调整参数、重新计算) 导风轮进口处的气流角 = 导风轮进口处的气流角 导风轮进口处的气流角 取冲角i i= 导风轮进口处的叶片角 = 取工作轮叶片数 滑移系数 工作轮出口气流圆周向分速 287m/s 工作轮出口气流径向分速 取 111m/s 工作轮出口气流速度 308m/s 工作轮出口气流角 取工作轮出口叶片角 (径向直叶片) 取工作轮出口叶片厚度 1.6mm 工作轮出口阻塞系数 0.965 取工作轮出口气流密度 取 =1.68kg/m 叶轮出口宽度 15.3mm 取轮阻损失系数 取 叶轮出口气温 =350K 取叶轮多变效率 取 =0.83 多变指数项 多变指数 1.52 叶轮出口气体压强 1.68 叶轮出口气体密度 =1.67kg/m 气体密度误差 =0.60%2% 叶轮出口马赫数 0.82 1认可 2.4 无叶扩压器段参数 无叶扩压器宽度 入口气流周向分速 =287m/s 入口气流径向分速 =107m/s 入口气流角 = 入口气流速度 =306m/s 入口气流温度 =350.61K 入口气流压强 =1.69 入口气流密度 =1.68kg/m 取出口直径比 取为1.16 出口直径 =336mm 出口密度(取) 1.78kg/m 出口气流速度 =249m/s 出口气流温度 366K 马赫数 =0.650.95认可 取多变效率 取为0.60 多变指数项 =2.1 出口空气压强 =1.86Pa 出口空气密度 =1.77kg/m 密度误差 0.56%2% 出口宽度 15.3mm 出口径向分速 =87.5m/s 出口周向分速 =233m/s 出口气流角 = 长度 23mm 2.5 叶片扩压器参数 取直径比 取为1.50 出口直径 435mm 出口宽度 15.3mm 进气口冲角 取 叶片进口角 叶片出口角 = 叶片进口阻塞系数 ,取=0.9 进口通道面积 =56cm 叶片数 ,取29 进口喉部宽度 12.6mm 设出口气流密度 =2.01kg/m 出口气流速度 =97m/s 出口空气温度 =392K 多变效率 ,取为0.8 多变指数项 =2.8 出口空气压强 出口空气密度 =0.49%2% 2.6 蜗壳参数 蜗壳出口气流速度 =60m/s 出口空气温度 =395K 多变效率 ,取为0.60 多变指数项 出口压强 蜗壳出口密度 kg/m 出口滞止温度 =396.8K 出口滞止压强 2.7 压缩机参数校核 压强比 2.39 滞止压强比 =2.43 等熵压缩功 l==83194J 压强系数 =0.695 绝热效率 =0.77 功率 =262kW 2.8 轴的强度校核 轴的材料选45钢,=25 轴的扭转强度条件为 可得轴的直径 轴上有两个键槽,应增大 (取30mm) 2.9 轴承和键的选择 查阅机械设计手册,选用61806-2RZ型深沟球轴承,油润滑 叶轮与轴采用双平键联接,键的规格为:键宽12,键高8,长度50,B型,代号B 2.10 轴承盖的参数计算 轴承盖采用透盖凸缘式,铸铁制造,无套杯,螺钉选用开槽盘头螺钉GB/T67 M412,材料为钢 e=1.2d=4.8mm,d-轴承盖螺钉直径 mm mm ,取为36mm mm 3 结论 经过了几个月,我总算把毕业设计这个大难题攻克下来了。期间有过不少的不眠之夜,还有到珠海盈德气体有限公司实习的经历。当初决定要做《 离

  2、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。

  3、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。

  Kaiyun(开云)体育官方网站

  4、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档

  第17课《短文两篇》之《陋室铭》知识点梳理及练习-2022-2023学年七年级语文下册古诗文专题期中期末复习(部编版)教师版.docx

  第15章轴对称图形与等腰三角形 综合检测 2023- 2024学年沪科版八年级数学上册.docx

  第16讲 勾股定理全章复习与测试-【暑假自学课】2022年新八年级数学暑假课(苏科版).docx

  2024_2025年新教材高中历史课时检测9近代西方的法律与教化含解析新人教版选择性必修1.doc

  山西版2024高考政治一轮复习第二单元生产劳动与经营第5课时企业与劳动者教案.docx

  2021第二季度入党积极分子思想汇报_入党积极分子思想汇报2021.docx

  原创力文档创建于2008年,本站为文档C2C交易模式,即用户上传的文档直接分享给其他用户(可下载、阅读),本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有。原创力文档是网络服务平台方,若您的权利被侵害,请发链接和相关诉求至 电线) ,上传者

  Kaiyun(开云)体育官方网站

搜索